10 research outputs found

    Deep Proximal Learning for High-Resolution Plane Wave Compounding

    Get PDF
    Plane Wave imaging enables many applications that require high frame rates, including localisation microscopy, shear wave elastography, and ultra-sensitive Doppler. To alleviate the degradation of image quality with respect to conventional focused acquisition, typically, multiple acquisitions from distinctly steered plane waves are coherently (i.e. after time-of-flight correction) compounded into a single image. This poses a trade-off between image quality and achievable frame-rate. To that end, we propose a new deep learning approach, derived by formulating plane wave compounding as a linear inverse problem, that attains high resolution, high-contrast images from just 3 plane wave transmissions. Our solution unfolds the iterations of a proximal gradient descent algorithm as a deep network, thereby directly exploiting the physics-based generative acquisition model into the neural network design. We train our network in a greedy manner, i.e. layer-by-layer, using a combination of pixel, temporal, and distribution (adversarial) losses to achieve both perceptual fidelity and data consistency. Through the strong model-based inductive bias, the proposed architecture outperforms several standard benchmark architectures in terms of image quality, with a low computational and memory footprint

    Ultrasound Signal Processing: From Models to Deep Learning

    Get PDF
    Medical ultrasound imaging relies heavily on high-quality signal processing algorithms to provide reliable and interpretable image reconstructions. Hand-crafted reconstruction methods, often based on approximations of the underlying measurement model, are useful in practice, but notoriously fall behind in terms of image quality. More sophisticated solutions, based on statistical modelling, careful parameter tuning, or through increased model complexity, can be sensitive to different environments. Recently, deep learning based methods have gained popularity, which are optimized in a data-driven fashion. These model-agnostic methods often rely on generic model structures, and require vast training data to converge to a robust solution. A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge. These model-based solutions yield high robustness, and require less trainable parameters and training data than conventional neural networks. In this work we provide an overview of these methods from the recent literature, and discuss a wide variety of ultrasound applications. We aim to inspire the reader to further research in this area, and to address the opportunities within the field of ultrasound signal processing. We conclude with a future perspective on these model-based deep learning techniques for medical ultrasound applications

    Ultrasound Signal Processing: From Models to Deep Learning

    No full text
    Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions. Conventionally, reconstruction algorithms have been derived from physical principles. These algorithms rely on assumptions and approximations of the underlying measurement model, limiting image quality in settings where these assumptions break down. Conversely, more sophisticated solutions based on statistical modeling or careful parameter tuning or derived from increased model complexity can be sensitive to different environments. Recently, deep learning-based methods, which are optimized in a data-driven fashion, have gained popularity. These model-agnostic techniques often rely on generic model structures and require vast training data to converge to a robust solution. A relatively new paradigm combines the power of the two: leveraging data-driven deep learning and exploiting domain knowledge. These model-based solutions yield high robustness and require fewer parameters and training data than conventional neural networks. In this work we provide an overview of these techniques from the recent literature and discuss a wide variety of ultrasound applications. We aim to inspire the reader to perform further research in this area and to address the opportunities within the field of ultrasound signal processing. We conclude with a future perspective on model-based deep learning techniques for medical ultrasound

    Shear-Wave Particle-Velocity Estimation and Enhancement Using a Multi-Resolution Convolutional Neural Network

    Get PDF
    Objective: Tissue mechanical properties are valuable markers for tissue characterization, aiding in the detection and staging of pathologies. Shear wave elastography (SWE) offers a quantitative assessment of tissue mechanical characteristics based on the SW propagation profile, which is derived from the SW particle motion. Improving the signal-to-noise ratio (SNR) of the SW particle motion would directly enhance the accuracy of the material property estimates such as elasticity or viscosity. Methods: In this paper, we present a 3-D multi-resolution convolutional neural network (MRCNN) to perform improved estimation of the SW particle velocity V. Additionally, we propose a novel approach to generate training data from real acquisitions, providing high SNR ground truth target data, one-to-one paired to inputs that are corrupted with real-world noise and disturbances. Discussion: By testing the network on in vitro data acquired from a commercial breast elastography phantom, we show that the MRCNN outperforms Loupas’ autocorrelation algorithm with an improved SNR of 4.47 dB for the V signals, a two-fold decrease in the standard deviation of the downstream elasticity estimates, and a two-fold increase in the contrast-to-noise ratio of the elasticity maps. The generalizability of the network was further demonstrated with a set of ex vivo porcine liver data. Conclusion: The proposed MRCNN outperforms the standard autocorrelation method, in particular in low SNR regimes

    Accelerated Intravascular Ultrasound Imaging using Deep Reinforcement Learning

    No full text
    Intravascular ultrasound (IVUS) offers a unique perspective in the treatment of vascular diseases by creating a sequence of ultrasound-slices acquired from within the vessel. However, unlike conventional hand-held ultrasound, the thin catheter only provides room for a small number of physical channels for signal transfer from a transducer-array at the tip. For continued improvement of image quality and frame rate, we present the use of deep reinforcement learning to deal with the current physical information bottleneck. Valuable inspiration has come from the field of magnetic resonance imaging (MRI), where learned acquisition schemes have brought significant acceleration in image acquisition at competing image quality. To efficiently accelerate IVUS imaging, we propose a framework that utilizes deep reinforcement learning for an optimal adaptive acquisition policy on a per-frame basis enabled by actor-critic methods and Gumbel top-K sampling

    High Resolution Plane Wave Compounding Through Deep Proximal Learning

    No full text
    Ultra-fast ultrasound imaging relies on coherent Plane Wave (PW) compounding to obtain sufficient spatial resolution, and contrast. However, the process of coherent PW compounding incurs a loss in temporal resolution. We propose a Deep Learning (DL) network that achieves high resolution PW compounding using a reduced number of PW transmits. We embed a model based signal processing algorithm in the design of the network, which leads to better performance through the exploitation of the prior information that is now available to the network. Our proposed method outperforms two benchmark networks, yielding approximately an 8.2% improvement in PSNR, over the next best network. Aiming for an additional boost in resolution, we moreover train towards images acquired using higher transmit frequencies

    Deep Proximal Unfolding For Image Recovery from Under-Sampled Channel Data in Intravascular Ultrasound

    No full text
    Intravascular UltraSound (IVUS) is a key tool in guiding the treatment and diagnosis of various coronary heart diseases. However, due to its nature IVUS is a very challenging modality to interpret, and suffers from a severely restricted data transfer rate. This forces a trade-off between temporal and spatial resolution. Here, we propose a model-based deep learning solution that aims to reconstruct images from data that has been beamformed by under-sampling the number of channels by a factor of 4. By exploiting the physics based measurement model, we achieve better performance and consistency in our predictions when compared to benchmark models. This lowers the computational load on existing hardware and enables in exploring our ability to run multiple visualisation modalities simultaneously, without a loss of temporal resolution

    Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound

    No full text
    Deep learning (DL) has proved successful in medical imaging and, in the wake of the recent COVID-19 pandemic, some works have started to investigate DL-based solutions for the assisted diagnosis of lung diseases. While existing works focus on CT scans, this paper studies the application of DL techniques for the analysis of lung ultrasonography (LUS) images. Specifically, we present a novel fully-annotated dataset of LUS images collected from several Italian hospitals, with labels indicating the degree of disease severity at a frame-level, video-level, and pixel-level (segmentation masks). Leveraging these data, we introduce several deep models that address relevant tasks for the automatic analysis of LUS images. In particular, we present a novel deep network, derived from Spatial Transformer Networks, which simultaneously predicts the disease severity score associated to a input frame and provides localization of pathological artefacts in a weakly-supervised way. Furthermore, we introduce a new method based on uninorms for effective frame score aggregation at a video-level. Finally, we benchmark state of the art deep models for estimating pixel-level segmentations of COVID-19 imaging biomarkers. Experiments on the proposed dataset demonstrate satisfactory results on all the considered tasks, paving the way to future research on DL for the assisted diagnosis of COVID-19 from LUS data
    corecore